Functions and mechanics of dynein motor proteins

Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein

Article Open access 23 November 2020

Nde1 promotes Lis1-mediated activation of dynein

Article Open access 09 November 2023

Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity

Article 27 April 2020

Accession codes

Accessions

Protein Data Bank

References

  1. Moughamian, A. J. & Holzbaur, E. in Dyneins: Structure, Biology and Disease (ed. King, S. M) 584–601 (Elsevier Inc., 2011).
  2. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nature Rev. Mol. Cell Biol.8, 880–893 (2007). ArticleCASGoogle Scholar
  3. Gibbons, I. R. Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. Natl Acad. Sci. USA50, 1002–1010 (1963). ArticleCASPubMedPubMed CentralGoogle Scholar
  4. Gibbons, I. & Rowe, A. Dynein: a protein with adenosine triphosphatase activity from cilia. Science149, 424–426 (1965). References 3 and 4 mark the discovery of dynein motor proteins.ArticleCASPubMedGoogle Scholar
  5. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol.105, 1273–1282 (1987). Describes the isolation and characterization of cytoplasmic dynein.ArticleCASPubMedGoogle Scholar
  6. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature330, 181–183 (1987). ArticleCASPubMedGoogle Scholar
  7. Schroer, T. A., Steuer, E. R. & Sheetz, M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell56, 937–946 (1989). ArticleCASPubMedGoogle Scholar
  8. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell42, 39–50 (1985). ArticlePubMedPubMed CentralCASGoogle Scholar
  9. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science288, 88–95 (2000). ArticleCASPubMedGoogle Scholar
  10. Billington, N. & Sellers, J. R. Dynein struts its stuff. Nature Struct. Mol. Biol.18, 635–636 (2011). ArticleCASGoogle Scholar
  11. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res.9, 27–43 (1999). CASPubMedGoogle Scholar
  12. Vallee, R. B., McKenney, R. J. & Ori-McKenney, K. M. Multiple modes of cytoplasmic dynein regulation. Nature Cell Biol.14, 224–230 (2012). ArticleCASPubMedGoogle Scholar
  13. Kardon, J. & Vale, R. Regulators of the cytoplasmic dynein motor. Nature Rev. Mol. Cell Biol.10, 854–865 (2009). ArticleCASGoogle Scholar
  14. Allan, V. J. Cytoplasmic dynein. Biochem. Soc. Trans.39, 1169–1178 (2011). ArticleCASPubMedGoogle Scholar
  15. Akhmanova, A. & Hammer, J. A. 3rd. Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol.22, 479–487 (2010). ArticlePubMedPubMed CentralCASGoogle Scholar
  16. Riedel-Kruse, I. H., Hilfinger, A., Howard, J. & Jülicher, F. How molecular motors shape the flagellar beat. HFSP J.1, 192–208 (2007). ArticlePubMedPubMed CentralGoogle Scholar
  17. Brokaw, C. Thinking about flagellar oscillation. Cell. Motil. Cytoskeleton66, 425–436 (2009). ArticleCASPubMedGoogle Scholar
  18. Lindemann, C. B. & Lesich, K. A. Flagellar and ciliary beating: the proven and the possible. J. Cell Sci.123, 519–528 (2010). ArticleCASPubMedGoogle Scholar
  19. King, S. M. Integrated control of axonemal dynein AAA + motors. J. Struct. Biol.179, 222–228 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  20. Wickstead, B. & Gull, K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic8, 1708–1721 (2007). ArticlePubMedPubMed CentralCASGoogle Scholar
  21. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell112, 467–480 (2003). ArticleCASPubMedGoogle Scholar
  22. Yagi, T. Bioinformatic approaches to dynein heavy chain classification. Methods Cell Biol.92, 1–9 (2009). ArticleCASPubMedGoogle Scholar
  23. Moore, J., Stuchell-Brereton, M. & Cooper, J. Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. Cell. Motil. Cytoskeleton66, 546–555 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  24. Egan, M. J., McClintock, M. A. & Reck-Peterson, S. L. Microtubule-based transport in filamentous fungi. Curr. Opin. Microbiol.15, 637–645 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  25. Koonce, M. P. Dictyostelium, a model organism for microtubule-based transport. Protist151, 17–25 (2000). ArticleCASPubMedGoogle Scholar
  26. Pfister, K. K. et al. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet.2, e1 (2006). ArticlePubMedPubMed CentralCASGoogle Scholar
  27. Trokter, M., Mücke, N. & Surrey, T. Reconstitution of the human cytoplasmic dynein complex. Proc. Natl Acad. Sci. USA109, 20895–20900 (2012). Describes the reconstitution of the human cytoplasmic dynein complex from recombinant subunits. Surprisingly, despite driving robust microtubule gliding, the complexes do not show processive motility, suggesting that additional factors might be required for this behaviour.ArticleCASPubMedPubMed CentralGoogle Scholar
  28. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol.20, 759–779 (2004). ArticleCASPubMedGoogle Scholar
  29. Driskell, O. J., Mironov, A., Allan, V. J. & Woodman, P. G. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nature Cell Biol.9, 113–120 (2007). ArticleCASPubMedGoogle Scholar
  30. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol.11, 1680–1685 (2001). ArticleCASPubMedGoogle Scholar
  31. Blocker, A. et al. Molecular requirements for bi-directional movement of phagosomes along microtubules. J. Cell Biol.137, 113–129 (1997). ArticlePubMedPubMed CentralCASGoogle Scholar
  32. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol.156, 855–865 (2002). ArticlePubMedPubMed CentralCASGoogle Scholar
  33. Kural, C. et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science308, 1469–1472 (2005). ArticleCASPubMedGoogle Scholar
  34. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Dynein-mediated cargo transport in vivo. A switch controls travel distance. J. Cell Biol.148, 945–956 (2000). ArticlePubMedPubMed CentralCASGoogle Scholar
  35. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell17, 2057–2068 (2006). ArticlePubMedPubMed CentralCASGoogle Scholar
  36. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature389, 81–85 (1997). ArticleCASPubMedGoogle Scholar
  37. Heerssen, H. M., Pazyra, M. F. & Segal, R. A. Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nature Neurosci.7, 596–604 (2004). ArticleCASPubMedGoogle Scholar
  38. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol. Biol. Cell11, 2047–2056 (2000). ArticlePubMedPubMed CentralCASGoogle Scholar
  39. Harrell, J. M. et al. Evidence for glucocorticoid receptor transport on microtubules by dynein. J. Biol. Chem.279, 54647–54654 (2004). ArticleCASPubMedGoogle Scholar
  40. Shah, J. V., Flanagan, L. A., Janmey, P. A. & Leterrier, J. F. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell11, 3495–3508 (2000). ArticlePubMedPubMed CentralCASGoogle Scholar
  41. Wilkie, G. S. & Davis, I. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell105, 209–219 (2001). ArticleCASPubMedGoogle Scholar
  42. Johnston, J. A., Illing, M. E. & Kopito, R. R. Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell. Motil. Cytoskeleton53, 26–38 (2002). ArticleCASPubMedGoogle Scholar
  43. Maday, S., Wallace, K. E. & Holzbaur, E. L. F. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol.196, 407–417 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  44. Dodding, M. P. & Way, M. Coupling viruses to dynein and kinesin-1. EMBO J.30, 3527–3539 (2011). ArticlePubMedPubMed CentralCASGoogle Scholar
  45. Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell139, 907–919 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  46. Steinberg, G. et al. Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. J. Cell Biol.198, 343–355 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  47. Schnyder, T. et al. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity34, 905–918 (2011). ArticleCASPubMedGoogle Scholar
  48. Hashimoto-Tane, A. et al. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity34, 919–931 (2011). ArticleCASPubMedGoogle Scholar
  49. Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell148, 502–514 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  50. Hendricks, A. G. et al. Dynein tethers and stabilizes dynamic microtubule plus ends. Curr. Biol.22, 632–637 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  51. Tsai, J.-W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci.10, 970–979 (2007). ArticleCASPubMedGoogle Scholar
  52. Dujardin, D. L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol.163, 1205–1211 (2003). ArticlePubMedPubMed CentralCASGoogle Scholar
  53. Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl Acad. Sci. USA103, 14883–14888 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  54. McNally, F. J. Mechanisms of spindle positioning. J. Cell Biol.200, 131–140 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  55. Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nature Cell Biol.14, 311–317 (2012). ArticleCASPubMedGoogle Scholar
  56. Collins, E. S., Balchand, S. K., Faraci, J. L., Wadsworth, P. & Lee, W.-L. Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol. Biol. Cell23, 3380–3390 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  57. Mitchison, T. et al. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton (Hoboken)69, 738–750 (2012). ArticleCASGoogle Scholar
  58. Kimura, K. & Kimura, A. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc. Natl Acad. Sci. USA108, 137–142 (2011). ArticleCASPubMedGoogle Scholar
  59. Longoria, R. A. & Shubeita, G. T. Cargo transport by cytoplasmic dynein can center embryonic centrosomes. PLoS ONE8, e67710 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  60. Corthesy-Theulaz, I., Pauloin, A. & Pfeffer, S. R. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol.118, 1333–1345 (1992). ArticleCASPubMedGoogle Scholar
  61. Levy, J. R. & Holzbaur, E. L. Dynein drives nuclear rotation during forward progression of motile fibroblasts. J. Cell Sci.121, 3187–3195 (2008). ArticlePubMedCASGoogle Scholar
  62. Raaijmakers, J. A. et al. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J.31, 4179–4190 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  63. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell108, 97–107 (2002). ArticleCASPubMedGoogle Scholar
  64. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature382, 420–425 (1996). ArticleCASPubMedGoogle Scholar
  65. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell87, 447–458 (1996). ArticleCASPubMedGoogle Scholar
  66. Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nature Rev. Mol. Cell Biol.14, 25–37 (2012). ArticleCASGoogle Scholar
  67. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol.155, 1159–1172 (2001). ArticlePubMedPubMed CentralCASGoogle Scholar
  68. Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol.3, 1001–1007 (2001). ArticleCASPubMedGoogle Scholar
  69. Varma, D., Monzo, P., Stehman, S. A. & Vallee, R. B. Direct role of dynein motor in stable kinetochore–microtubule attachment, orientation, and alignment. J. Cell Biol.182, 1045–1054 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  70. Yang, Z., Tulu, U. S., Wadsworth, P. & Rieder, C. L. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol.17, 973–980 (2007). ArticlePubMedPubMed CentralCASGoogle Scholar
  71. Ishikawa, H. & Marshall, W. F. Ciliogenesis: building the cell's antenna. Nature Rev. Mol. Cell Biol.12, 222–234 (2011). ArticleCASGoogle Scholar
  72. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol.144, 473–481 (1999). ArticlePubMedPubMed CentralCASGoogle Scholar
  73. Porter, M. E., Bower, R., Knott, J. A., Byrd, P. & Dentler, W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell10, 693–712 (1999). ArticlePubMedPubMed CentralCASGoogle Scholar
  74. Mikami, A. et al. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J. Cell Sci.115, 4801–4808 (2002). ArticleCASPubMedGoogle Scholar
  75. Perrone, C. A. et al. A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in Chlamydomonas and mammalian cells. Mol. Biol. Cell14, 2041–2056 (2003). ArticlePubMedPubMed CentralCASGoogle Scholar
  76. Ichikawa, M., Watanabe, Y., Murayama, T. & Toyoshima, Y. Y. Recombinant human cytoplasmic dynein heavy chain 1 and 2: observation of dynein-2 motor activity in vitro. FEBS Lett.585, 2419–2423 (2011). ArticleCASPubMedGoogle Scholar
  77. Pigino, G. et al. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol.187, 135–148 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  78. Laib, J. A., Marin, J. A., Bloodgood, R. A. & Guilford, W. H. The reciprocal coordination and mechanics of molecular motors in living cells. Proc. Natl Acad. Sci. USA106, 3190–3195 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  79. Shih, S. M. et al. Intraflagellar transport drives flagellar surface motility. Elife2, e00744 (2013). ArticlePubMedPubMed CentralGoogle Scholar
  80. Mallik, R., Rai, A. K., Barak, P., Rai, A. & Kunwar, A. Teamwork in microtubule motors. Trends Cell Biol.http://dx.doi.org/10.1016/j.tcb.2013.06.003 (2013).
  81. Koonce, M. P. & Samsó, M. Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell7, 935–948 (1996). Details a recombinant expression system for theD. discoideumcytoplasmic dynein motor domain, forming the foundation for numerous structural and functional analyses. Also demonstrates that the motor domain includes the globular head structure seen in earlier electron microscopy images.ArticlePubMedPubMed CentralCASGoogle Scholar
  82. Nishiura, M. et al. A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J. Biol. Chem.279, 22799–22802 (2004). ArticleCASPubMedGoogle Scholar
  83. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell126, 335–348 (2006). EstablishesS. cerevisiaeas another important cytoplasmic dynein expression system and provides insight into the requirements for processive dynein motion.ArticlePubMedPubMed CentralCASGoogle Scholar
  84. Höök, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J. Biol. Chem.280, 33045–33054 (2005). ArticleCASPubMedGoogle Scholar
  85. Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl Acad. Sci. USA104, 16134–16139 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  86. Mogami, T., Kon, T., Ito, K. & Sutoh, K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J. Biol. Chem.282, 21639–21644 (2007). ArticleCASPubMedGoogle Scholar
  87. Johnson, K. A. Pathway of the microtubule–dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Biophys. Chem.14, 161–188 (1985). ArticleCASPubMedGoogle Scholar
  88. Samsó, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol.276, 927–937 (1998). ArticlePubMedGoogle Scholar
  89. Gee, M. A., Heuser, J. E. & Vallee, R. B. An extended microtubule-binding structure within the dynein motor domain. Nature390, 636–639 (1997). ArticleCASPubMedGoogle Scholar
  90. Roberts, A. J. et al. ATP-driven remodeling of the linker domain in the dynein motor. Structure20, 1670–1680 (2012). A 2D and 3D electron microscopy study of an axonemal and cytoplasmic dynein, revealing that the linker domain is a stable structural entity that is remodelled by the AAA+ ring.ArticlePubMedPubMed CentralCASGoogle Scholar
  91. Roberts, A. et al. AAA+ ring and linker swing mechanism in the dynein motor. Cell136, 485–495 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  92. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature421, 715–718 (2003). ArticleCASPubMedGoogle Scholar
  93. Kon, T. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature484, 345–350 (2012). Reports a high-resolution crystal structure of theD. discoideumdynein motor domain in the ADP-bound state. Structure-guided mutagenesis provides insight into how the linker domain moves and the roles of the AAA+ modules, strut and C-terminal sequence in allosteric communication.ArticleCASPubMedGoogle Scholar
  94. Kon, T., Sutoh, K. & Kurisu, G. X-ray structure of a functional full-length dynein motor domain. Nature Struct. Mol. Biol.18, 638–642 (2011). ArticleCASGoogle Scholar
  95. Schmidt, H., Gleave, E. S. & Carter, A. P. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nature Struct. Mol. Biol.19, 492–497 (2012). Reports a high-resolution structure of theS. cerevisiaedynein motor domain, crystallized in the absence of nucleotide. Crystal-soaking experiments reveal distinct nucleotide-binding behaviours in AAA1–AAA4, and mutagenesis suggests a functional role for linker docking at AAA5.ArticleCASGoogle Scholar
  96. Carter, A. P., Cho, C., Jin, L. & Vale, R. D. Crystal structure of the dynein motor domain. Science331, 1159–1165 (2011). ArticlePubMedPubMed CentralCASGoogle Scholar
  97. Glynn, S. E., Martin, A., Nager, A. R., Baker, T. A. & Sauer, R. T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell139, 744–756 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  98. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure9, 1107–1116 (2001). ArticleCASPubMedGoogle Scholar
  99. Gibbons, I. R. et al. Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J. Biol. Chem.262, 2780–2786 (1987). CASPubMedGoogle Scholar
  100. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y. Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry43, 11266–11274 (2004). ArticleCASPubMedGoogle Scholar
  101. Enemark, E. J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature442, 270–275 (2006). ArticleCASPubMedGoogle Scholar
  102. Cho, C., Reck-Peterson, S. & Vale, R. Cytoplasmic dynein's regulatory ATPase sites affect processivity and force generation. J. Biol. Chem.283, 25839–25845 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  103. Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell150, 975–986 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  104. McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B. & Gross, S. P. LIS1 and NudE induce a persistent dynein force-producing state. Cell141, 304–314 (2010). ArticlePubMedPubMed CentralCASGoogle Scholar
  105. Yamada, M. et al. LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J.27, 2471–2483 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  106. Cho, C. & Vale, R. D. The mechanism of dynein motility: insight from crystal structures of the motor domain. Biochim. Biophys. Acta1823, 182–191 (2011). ArticlePubMedPubMed CentralCASGoogle Scholar
  107. Numata, N., Shima, T., Ohkura, R., Kon, T. & Sutoh, K. C-Sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett.585, 1185–1190 (2011). ArticleCASPubMedGoogle Scholar
  108. Hwang, W. & Lang, M. J. Nucleotide-dependent control of internal strains in ring-shaped AAA+ motors. Cell. Mol. Bioeng.6, 65–73 (2013). ArticleCASPubMedGoogle Scholar
  109. Gibbons, I. R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem.280, 23960–23965 (2005). ArticlePubMedCASGoogle Scholar
  110. Carter, A. P. et al. Structure and functional role of dynein's microtubule-binding domain. Science322, 1691–1695 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  111. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature Struct. Mol. Biol.16, 325–333 (2009). ArticleCASGoogle Scholar
  112. Redwine, W. B. et al. Structural basis for microtubule binding and release by dynein. Science337, 1532–1536 (2012). References 109–112 provide evidence for the helix-sliding hypothesis for allosteric communication through the stalk of dynein, which was put forward in reference 109. Reference 112 also provides insight into the structural changes within the microtubule-binding domain of dynein.ArticlePubMedPubMed CentralCASGoogle Scholar
  113. Sweeney, H. L. & Houdusse, A. The motor mechanism of myosin V: insights for muscle contraction. Philo. Trans. R. Soc. Lond. B359, 1829–1841 (2004). ArticleCASGoogle Scholar
  114. Xi, Z., Gao, Y., Sirinakis, G., Guo, H. & Zhang, Y. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding. Proc. Natl Acad. Sci. USA109, 5711–5716 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  115. Burgess, S. A., Walker, M. L., Sakakibara, H., Oiwa, K. & Knight, P. J. The structure of dynein-c by negative stain electron microscopy. J. Struct. Biol.146, 205–216 (2004). ArticleCASPubMedGoogle Scholar
  116. Burgess, S. A. & Knight, P. J. Is the dynein motor a winch? Curr. Opin. Struct. Biol.14, 138–146 (2004). ArticleCASPubMedGoogle Scholar
  117. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell131, 952–965 (2007). ArticlePubMedPubMed CentralCASGoogle Scholar
  118. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nature Struct. Mol. Biol.12, 513–519 (2005). ArticleCASGoogle Scholar
  119. Shima, T., Kon, T., Imamula, K., Ohkura, R. & Sutoh, K. Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Natl Acad. Sci. USA103, 17736–17740 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  120. Ueno, H., Yasunaga, T., Shingyoji, C. & Hirose, K. Dynein pulls microtubules without rotating its stalk. Proc. Natl Acad. Sci. USA105, 19702–19707 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  121. Movassagh, T., Bui, K. H., Sakakibara, H., Oiwa, K. & Ishikawa, T. Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nature Struct. Mol. Biol.17, 761–767 (2010). ArticleCASGoogle Scholar
  122. Qiu, W. et al. Dynein achieves processive motion using both stochastic and coordinated stepping. Nature Struct. Mol. Biol.19, 193–200 (2012). ArticleCASGoogle Scholar
  123. Dewitt, M. A., Chang, A. Y., Combs, P. A. & Yildiz, A. Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science335, 221–225 (2011). References 122 and 123 use two-colour single-molecule experiments to reveal thatS. cerevisiaecytoplasmic dynein dimers can move processively along the microtubule without following a strict stepping pattern. Analysis of the stepping traces provides insight into the spatial configuration of the motor domains and their loose, tension-based coordination.ArticlePubMedPubMed CentralCASGoogle Scholar
  124. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor, myosin V. Nature Cell Biol.4, 59–65 (2002). ArticleCASPubMedGoogle Scholar
  125. Shima, T., Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor. J. Struct. Biol.156, 182–189 (2006). ArticleCASPubMedGoogle Scholar
  126. Stinson, B. M. et al. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell153, 628–639 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  127. Sakamoto, T., Webb, M. R., Forgacs, E., White, H. D. & Sellers, J. R. Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature455, 128–132 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  128. Firestone, A. J. et al. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature484, 125–129 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  129. Kamiya, R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int. Rev. Cytol.219, 115–155 (2002). ArticleCASPubMedGoogle Scholar
  130. Kikushima, K. & Kamiya, R. Clockwise translocation of microtubules by flagellar inner-arm dyneins in vitro. Biophys. J.94, 4014–4019 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  131. Mallik, R., Carter, B. C., Lex, S. A., King, S. J. & Gross, S. P. Cytoplasmic dynein functions as a gear in response to load. Nature427, 649–652 (2004). ArticleCASPubMedGoogle Scholar
  132. Rai, A. K., Rai, A., Ramaiya, A. J., Jha, R. & Mallik, R. Molecular adaptations allow dynein to generate large collective forces inside cells. Cell152, 172–182 (2013). ArticleCASPubMedGoogle Scholar
  133. Schroeder, H. W., Mitchell, C., Shuman, H., Holzbaur, E. L. F. & Goldman, Y. E. Motor number controls cargo switching at actin-microtubule intersections in vitro. Curr. Biol.20, 687–696 (2010). ArticleCASPubMedGoogle Scholar
  134. Toba, S., Watanabe, T. M., Yamaguchi-Okimoto, L., Toyoshima, Y. Y. & Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl Acad. Sci. USA103, 5741–5745 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  135. Walter, W. J., Koonce, M. P., Brenner, B. & Steffen, W. Two independent switches regulate cytoplasmic dynein's processivity and directionality. Proc. Natl Acad. Sci. USA109, 5289–5293 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  136. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. F. Processive bidirectional motion of dynein-dynactin complexes in vitro. Nature Cell Biol.8, 562–570 (2006). ArticleCASPubMedGoogle Scholar
  137. Ananthanarayanan, V. et al. Dynein motion switches from diffusive to directed upon cortical anchoring. Cell153, 1526–1536 (2013). ArticleCASPubMedGoogle Scholar
  138. Nicastro, D. et al. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc. Natl Acad. Sci. USA108, E845–E853 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  139. Summers, K. E. & Gibbons, I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl Acad. Sci. USA68, 3092–3096 (1971). ArticleCASPubMedPubMed CentralGoogle Scholar
  140. Nicastro, D. Cryo-electron microscope tomography to study axonemal organization. Methods Cell Biol.91, 1–39 (2009). ArticleCASPubMedGoogle Scholar
  141. Hom, E. F. et al. A unified taxonomy for ciliary dyneins. Cytoskeleton (Hoboken)68, 555–565 (2011). ArticleCASGoogle Scholar
  142. Bui, K. H., Yagi, T., Yamamoto, R., Kamiya, R. & Ishikawa, T. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J. Cell Biol.198, 913–925 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  143. Kagami, O. & Kamiya, R. Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein. J. Cell Sci.103, 653–664 (1992). CASGoogle Scholar
  144. Yagi, T., Uematsu, K., Liu, Z. & Kamiya, R. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella. J. Cell Sci.122, 1306–1314 (2009). ArticleCASPubMedGoogle Scholar
  145. Woolley, D. M. Studies on the eel sperm flagellum. I. The structure of the inner dynein arm complex. J. Cell Sci.110, 85–94 (1997). CASPubMedGoogle Scholar
  146. Zhang, X. & Wigley, D. The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nature Struct. Mol. Biol.15, 1223–1227 (2008). ArticleCASGoogle Scholar
  147. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol.6, 519–529 (2005). ArticleCASGoogle Scholar
  148. Pfister, K. K. et al. Cytoplasmic dynein nomenclature. J. Cell Biol.171, 411–413 (2005). ArticlePubMedPubMed CentralCASGoogle Scholar
  149. Mizuno, N. et al. Dynein and kinesin share an overlapping microtubule-binding site. EMBO J.23, 2459–2467 (2004). ArticlePubMedPubMed CentralCASGoogle Scholar

Acknowledgements

The authors apologize to their colleagues whose work could not be cited owing to space limitations. They thank K. Toropova, R. Hernandez-Lopez, J. Huang and S. Reck-Peterson for helpful comments on the manuscript and B. Malkova for providing electron microscopy data for figure 5a. A.J.R. is grateful to J. Iwasa for training on AutoDesk Maya software. The work in the authors laboratory was supported by: a Sir Henry Wellcome Postdoctoral Fellowship (092436/Z/10/Z) to A.J.R.; a Grant-in-Aid for Scientific Research (B) 23370073 from the Japan Society for Promotion of Science (JSPS) and a Japan Science and Technology Agency PRESTO award to T.K.; a Grant-in-Aid for Scientific Research (B) 23370075 from the JSPS to K.S., and grants BB/E00928X/1 and BB/BB/K000705/1 from the BBSRC (UK) and RGP0009/2008-C from the Human Frontiers Science Program to S.A.B.

Author information

  1. S.A.Burgess@leeds.ac.uk

Authors and Affiliations

  1. Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK Anthony J. Roberts, Peter J. Knight & Stan A. Burgess
  2. Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, 02115, Massachusetts, USA Anthony J. Roberts
  3. Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan Takahide Kon
  4. Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Saitama, Japan Takahide Kon
  5. Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, 169-8555, Tokyo, Japan Kazuo Sutoh
  1. Anthony J. Roberts